All Hadronic Searches with CMS

Kenichi Hatakeyama
Baylor University
For the CMS Collaboration

Workshop on SUSY with 5 / fb at the LHC Brookhaven National Laboratory May 2 - 4, 2012

CMS All Hadronic Analyses

CMS has four complementary analyses searching for

cms has rour complementary analyses scarening for						
Supersymmetry in all-hadronic signatures:						
☐ Search with Jets + MHT (SUS-12-011)						
\square Search with M _{T2} (SUS-12-002)						
☐ Search with Razor variables (SUS-12-005)						
\square Searches with α_T (SUS-11-003)						
Looking at different kinematic features of signal events.						
All these searches are performed in a generic-way, thus						

☐ All the public results can be found on:
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

sensitive to any new physics with multijets + MET

CMS in 2011

- ☐ More than 5 fb⁻¹ collected @ 7 TeV
- ☐ Peak lumi 3.5x10³³ cm⁻²s⁻¹
- □ Data taking efficiency: 90%
- ☐ Mean pileup: ~10

And, in 2012 we already have ~1fb⁻¹ of 8 TeV data with peak lumi 3.5x10³³ cm⁻²s⁻¹.

Where We Were Last Fall!

How much more did we learn since then?

Jets + MHT: Introduction

- A generic search for large missing transverse momentum in events containing multijets is "motivated" by R-parity conserving SUSY
 - lacksquare strong production of $\widetilde{g}\widetilde{g},\widetilde{g}\widetilde{q},\widetilde{q}\widetilde{q}$ pairs

$$H_T = \sum_{i}^{jets} \left| \overrightarrow{p}_T, i \right|$$

$$M_T = \left| -\sum_{i}^{jets} \vec{p}_T, i \right|$$

Characterize visible energy of the event

Characterize energy carried by undetected particle

SM Backgrounds

- \Box Z(vv)+jets
- \square W/tt+jets with W(e/ μ / τ v)
- □ QCD multijet
- ☐ The key is that we understand SM backgrounds including the MH_T arising from detector effects and reconstruction failure

Analysis Strategy

☐ Sample selection

- At least 3 jets with $p_T > 50$ GeV & $|\eta| < 2.5$
- Veto events with isolated e & μ : reduce W/top background \Box $p_T>10$ GeV, $|\eta|<2.5$, isolation<0.2
- \blacksquare $\Delta\Phi(MH_T, Jets_{123}) > (0.5, 0.5, 0.3)$: reduce QCD background
- H_T scalar sum of all jets with $p_T > 50 & |\eta| < 2.5$
- MH_T magnitude of vector sum of all jets with $p_T>30$ GeV & $|\eta|<5$

Analysis strategy

An inclusive analysis based on H_T and MH_T

☐ Search regions in H_T & MH_T

- Baseline $(H_T > 500 \& MH_T > 200 GeV)$
- 14 exclusive bins in H_T & MH_T

$\begin{array}{c} \text{MHT} \rightarrow \\ \text{HT} \downarrow \end{array}$	200-350	350-500	500-600	>600 bin 4				
500-800	bin 1	bin 2	bin 3					
800-1000	bin 5	bin 6	bin 7	bin 8				
1000-1200	bin 9	bin 10	bin 11					
1200-1400	bin 12	bin 13						
>1400		bin 14						

Data and MC Comparisons

- \Box The H_T & MH_T distributions are well described by CMS simulation
 - Evaluating systematics for both the generator-level information and detector simulation accurately for not trivial.
- We estimate the backgrounds from collision data.

Z(vv)+Jets from $\gamma+Jets$

- ☐ A straightforward method is to use Z (ll) +Jets events
 - suffers from lack of statistics in tighter search regions and is used only to cross-check the background prediction using γ + Jets

- At high p_T, the Z+jets/γ +jets ratio depends mainly on the EWK characteristics of the event
- \square Hadronic part of the event is independent of whether the boson is Z or γ
- ☐ Theoretical uncertainty (from BlackHat):
 - EWK corr. at higher orders
 - large QCD logarithm terms

Sizable theory uncertainty: 21-42%. The reduction is critical for future searches.

Z(vv)+Jets from $\gamma+Jets$

Start with a γ+jets control sample : $p_T(\gamma)>100$ GeV.

$$N^{Z(\nu\nu)+jets}(\text{data}) = \frac{Z + \text{jets}}{\gamma + \text{jets}} \cdot \text{Purity } \cdot N^{\gamma + \text{jets}} \text{ (data)}$$

- ☐ Subtract contributions from secondary photons: purity=98-99% as measured from data using isolation
- Correct for photon reco & isolation efficiencies measured from data using tag-and-probe method on Z(ee)+jets
- \square Scale with Z(vv)+jets/ γ +jets production ratio
- Predictions of Z(vv)+jets using μ+μ +jets are compatible with those from γ+jets within uncertainties

W/Top(e/ μ / τ + ν)+Jets

Lost lepton background:

- ☐ Leptons failing the lepton veto criteria contribute to BG:
 - the lepton is not reconstructed, not isolated, out of acceptance

Hadronic tau background:

- ☐ Tau decaying hadronically contribute to BG with one tau-jet:
 - the lepton is not reconstructed, not isolated out of acceptance

Top / W + hadronic tau + v + Jets

- \square Start with a μ +jets sample
- \square Replace the μ by τ response template derived from MC
- \square Recalculate H_T and MH_T including this expected energy from τ
- Correct for muon acceptance, trigger, reco, & iso efficiency $BR(W \rightarrow \tau \rightarrow hadrons)/BR(W \rightarrow \mu)$

Data-driven estimate consistent with MC expectation

QCD: ReBalance + Smear

- ☐ QCD multijet events are balanced at the parton level
- ☐ An imbalance is introduced by the mis-measurement of jets due to detector response fluctuations or heavy-flavor jets

- Rebalance: Particle level jet p_T is restored from detector level inclusive multijet data using a kinematic fit subject to constraint $MH_T=0$ (using jet resolution functions derived from MC but corrected to match data)
- ☐ Smear: "Rebalanced" events are smeared using the measured jet resolution functions including the tails

QCD: ReBalance + Smear

- ☐ Method validated using the MC Simulation
- ☐ Total systematic uncertainty 60-70%
 - Closure test, jet resolution measurements, pileup effects, heavyflavor modeling

Results & Interpretations

Searches with M_{T2}

The M_{T2} is a generalization of the transverse mass for decay chains with two unobserved particles. typical in R-parity conserving SUSY

$$M_{T2} = \min_{\substack{p_T^{c1} + p_T^{c2} = p_T }} \left[\max \left(m_T^{(1)}, m_T^{(2)} \right) \right]$$

☐ For the simplified case of no ISR and zero masses:

$$(M_{T2})^2 \simeq 2p_T^{vis(1)}p_T^{vis(2)}(1+\cos\phi_{12})$$

- Multijet events divided into 2 massless pseudo-jets using a hemisphere algorithm
- \square $M_{T2} \sim MET$ for symmetric SUSY-like topologies
- \square M_{T2} is a QCD killer
 - $MT2 \approx 0$ for back-to-back events with no genuine MET
 - MT2 < MET still highly suppressed for nearly back-to-back QCD mismeasurements</p>
- \square M_{T2} provides very good discriminating power between SM and SUSY-like events, and in this analysis is used as a discovery variable

Analysis Strategy

- \square Multi-bin analysis based on H_T & M_{T2}
- ☐ Background estimated in each bin using data-driven methods
- There are two analyses targeting complementary SUSY topologies
 - MT2 analysis and MT2b analysis: See Keith's talk for MT2b

MT2 analysis

- ☐ At least 3 jets
- \square 2 H_T bins [750-950-:GeV], 5 M_{T2} bins [150-200-275-375-500-:GeV]
- ☐ W+jets and Z→vv main backgrounds (and QCD)
- Optimized for signals with large MET (low m_0) [MT2b for high m_0]

Background estimation:

 $Z \rightarrow vv$: from $Z \rightarrow ll$ and $W \rightarrow lv$ W+jets: similar to prev. search

QCD: Factorization method

Z→vv from W→lv

☐ Predict Z(vv)+jets from photon+jets and W(lv)+jets events

Z(vv)+jets from W(lv)+jets

- \square W(\rightarrow lv)+jets enriched sample obtained by using all selection cuts and:
 - One μ with $p_T > 10$ GeV
 - B-tag veto to suppress ttbar
 - \blacksquare m_T(W)<100 GeV to reduce signal contamination
- \square Z(\rightarrow vv)+jets estimated as

$$N_{Z(\rightarrow vv)} = N_{W(\rightarrow lv)} 1/(\epsilon_{acc}\epsilon_{reco/iso}) R_{MC}$$

- Muon acceptance from MC
- Muon reco/iso efficiencies obtained from Tag&Probe in data
- R_{MC} corrects for: kinematic differences, cross-sections, M_T &b-tag veto efficiencies
- Backgrounds subtraction by MC, except ttbar, which is estimated using ttbar enriched data by requesting 1 b-tag

Consistent with the estimation from photon+jets Weighted average to give the final Z→vv estimation

QCD

QCD factorization method:

- Predict signal region (high M_{T2} , ϕ_{min} > 0.3) from QCD-rich region (high M_{T2} , ϕ_{min} < 0.2)
- ☐ Exponential functional form motivated from simulation

$$r(M_{T2}) = \frac{N(\Delta\phi_{min} > 0.3)}{N(\Delta\phi_{min} < 0.2)} = e^{a-b \cdot M_{T2}} + c$$

- \square Fit region 50 < M_{T2} < 80 GeV to have minimal contamination from non-QCD data
- ☐ EWK background is subtracted from data, and a fit is performed to extract *a* and *b*
- Constant term c taken conservatively as the value of the fitted exponential at M_{T2} = 250 GeV

MT2 Search Results

Observations consistent with SM expectations

	$Z \rightarrow \nu \nu$		Lost lepton		au ightarrow had	QCD		Total bkg.		Data
M_{T2} bin	MC	data pred.	MC	data pred.	Estimate	MC	data pred.	MC	data pred.	
$750 \le H_T \le 950$										
[150,200)	27.9	24.2 ± 4.9	36.0	29.6 ± 7.1	22.5 ± 5.4	3.1	7.0 ± 3.5	89.5	83.3 ± 10.7	88
[200,275)	20.3	21.8 ± 4.8	17.2	11.9 ± 3.9	12.7 ± 4.2	0.0	1.0 ± 0.5	50.2	47.4 ± 7.5	69
[275,375)	11.6	13.7 ± 3.8	7.1	4.2 ± 1.9	5.4 ± 2.5	0.0	0.14 ± 0.07	24.1	23.4 ± 4.9	19
[375,500)	6.1	4.1 ± 1.6	2.2	1.1 ± 0.9	2.2 ± 1.8	0.0	0.08 ± 0.05	10.4	7.4 ± 2.6	8
≥500	3.5	1.8 ± 0.9	1.1	1.2 ± 1.0	0.6 ± 0.5	0.0	0.00 ± 0.00	5.3	3.6 ± 1.4	6
$H_T \ge 950$										
[150,200)	12.9	16.7 ± 3.6	18.7	16.2 ± 5.3	12.7 ± 4.1	9.8	11.0 ± 5.5	54.2	56.6 ± 9.4	70
[200,275)	10.5	4.5 ± 2.0	11.7	10.2 ± 3.7	7.1 ± 2.6	0.47	1.4 ± 0.7	29.8	23.2 ± 5.0	23
[275,375)	6.4	5.7 ± 2.2	5.0	2.9 ± 1.7	3.3 ± 1.9	0.04	0.13 ± 0.07	14.7	12.1 ± 3.3	9
[375,500)	2.5	3.0 ± 1.4	1.1	0.6 ± 0.6	0.9 ± 0.9	0.0	0.06 ± 0.04	4.6	4.6 ± 1.8	8
≥500	2.2	2.5 ± 1.5	0.6	0.6 ± 0.6	0.6 ± 0.6	0.0	0.06 ± 0.04	3.4	3.8 ± 1.7	4

Interpretations

Razor

Razor search designed to discriminate heavy pair production kinematically from SM backgrounds

☐ No assumptions on MET or details of decay chain

R frame equalizes 3-momentum of the two jets = *CM frame* if no ISR and sparticles are produced at threshold.

$$M_R = 2p = \sqrt{\hat{s}}$$

 M_R peaks for the signal at the mass scale of the heavy particle, M_D

Razor

Razor search designed to discriminate heavy pair production kinematically from SM backgrounds

No assumptions on Met or details of decay chain

CM frame

M_R definition: multijet background

Laboratory Frame

 Two jets back to back

R frame equalizes 3-momentum of the two jets = CM frame if no ISR and sparticles are produced at threshold

$$M_R = 2p = \sqrt{\hat{s}}$$
 M_R falls steeply

Razor

For the signal, M_R is a measure of the mass of the heavy particle and peaks at the scale of the production

- \triangleright Maximum of scalar sum of the p_T of the two jets is M_p
- \triangleright The maximum value of ME_T is also M_D

Real life: multi-jet events \rightarrow define two hemispheres and combine jets into two mega-jets (force di-jet topology)

$$M_T^R = \sqrt{\frac{|E_T^{miss}|(p_T^{j1} + p_T^{j2}) - \vec{E}_T^{miss}.(\vec{p}_T^{j1} + \vec{p}_T^{j2})}{2}}$$
 Transverse M_R has a kinematic edge of M_D

edge of M_D

$$M_R = 2 | \vec{p}_{j1}^R | = 2 | \vec{p}_{j2}^R | \sqrt{\frac{(E^{j1}p_z^{j2} - E^{j2}p_z^{j1})^2}{(p_z^{j1} - p_z^{j2})^2 - (E^{j1} - E^{j2})^2}} \quad M_R \text{ peaks at mass scale } M_D$$

$$R = \frac{M_T^R}{M_P}$$
 Razor (R) has a kinematic edge of 1, peaks at 0.5

Razor used to separate signal from background

R and M_R Properties

$$f(R^2) \propto e^{-SR^2}$$

 $S = a + b(M_R \text{ cut})$

$$f(R^2, M_R) \propto \left[k(M_R - M_R^0)(R^2 - R_0^2) \right] e^{-k(M_R - M_R^0)(R^2 - R_0^2)}$$

 $b(\text{from } M_R \text{ view}) = d(\text{from } R^2 \text{ view}) = k(\text{from 2D view})$

"Box" Definitions and Fits

classification based on lepton ID

Extended and unbinned maximum likelihood fit performed in 2D R²-M_R plane independently in each BOX

Background functionally extrapolated to signal region

Results

1D projections of 2D ML Fit - HAD Box

Observations consistent with SM expectations

Model independent results showing data/prediction compatibility

Summary

- CMS has performed 3 variants of all hadronic SUSY searches with the full 2011 data
 - Data consistent with the SM backgrounds. Comparable results from different searches.
- Our constraints on the gluinos and 1st generation squarks are getting quite strong:
 - Gluino mass exclusion reaching ~1 TeV depending on the assumptions on other SUSY parameters.
 - The naïve picture with copiously-producued strongly-interacting gluinos and 1st generation quarks is getting disfavored, but we still need to keep looking.
- CMS searches have various ways to improve the search sensitivities for 2012 data analysis:
 - Specifically look at high jet multiplicities sensitivities to long-cascade models. Reduce systematics for $Z(\rightarrow vv)$ +jets BG estimation from γ +jets (close collaboration with theory groups), etc etc.

